Contiguous minimum single-source-multi-sink
cuts in weighted planar graphs

Ivona Bezédkova and Zachary Langley

Rochester Institute of Technology, Rochester, NY, USA
{ib,2zb19222}0cs.rit.edu

Abstract. We present a fast algorithm for uniform sampling of contigu-
ous minimum cuts separating a source vertex from a set of sink vertices
in a weighted undirected planar graph with n vertices embedded in the
plane. The algorithm takes O(n) time per sample, after an initial O(n?)
preprocessing time during which the algorithm computes the number of
all such contiguous minimum cuts. Contiguous cuts (that is, cuts where
a naturally defined boundary around the cut set forms a simply con-
nected planar region) have applications in computer vision and medical
imaging [6, 14].

1 Introduction

Graph cuts have become a popular tool in computer vision over the past decade,
see, e. g., [7,6,14]. The goal of image segmentation is to partition a given image
into meaningful segments, for example, to isolate an object in the foreground
from the background, or to find the boundary of an organ on an ultrasound
image.

The image is represented by a graph of pixels (the vertices), edges connect
neighboring pixels, and edge weights represent (dis)similarity between the end-
points. In the simplest scenario a user selects a point in the object (the source)
and a point in the background (the sink) and a minimum cut between the source
and the sink is used to isolate the object from the background.

However, thin objects such as blood vessels are often hard to isolate when
using a cut between only two points, see, e. g., [14]. This is because the minimum
cut might be clustered around the selected point in the object — for example,
opting to sever the point from the rest of the blood vessel — instead of form-
ing a needle-like shape with numerous cut edges of small weight. To avoid this
problem, the user may select additional points (seeds) in the object and/or the
background, and keep selecting such points until the desired segmentation is
achieved — this is known as interactive image segmentation. However, with mul-
tiple seeds the cut might consist of several planar regions — for example, regions
around the seeds, severing the blood vessel multiple times — instead of a desired
single region. A natural solution to this problem is to enforce “contiguity” of the
cut; similar concepts are known as a “connectivity prior” [14] and a “topology
preserving cut” [6,15].

A cut separating the source vertices S from the sink vertices T is a set
of vertices containing every vertex in S and no vertex from T — we refer to
these cuts as (S, T)-cuts. An (S,T)-cut is minimum if the sum of the weights
of edges connecting a vertex in the cut set to a vertex outside the cut set is
the smallest possible across all (S, T)-cuts. For planar graphs embedded in the
plane, we consider a cut to be contiguous if a region formed by connecting the
neighborhoods around each cut vertex along edges and through faces shared
by these vertices is simply connected, see Figure 1 and the formal definition in
Section 2.

We present an O(n) algorithm that produces a uniformly random contiguous
minimum cut separating a single source vertex from a set of sink vertices in a
positively weighted undirected planar graph embedded in the plane. The algo-
rithm uses O(n?) preprocessing time during which it computes the number of
all contiguous minimum (s,T')-cuts for a source s and a set of sink vertices T
Note that there could be exponentially many such cuts. Optimization problems
with multiple optimum solutions have been recognized as drawbacks in computer
vision, see, e. g., [10]. In such cases, random sampling can be used to gather var-
ious statistical data on the solutions, or the user can be given a choice between
several randomly generated solutions.

We note that heuristics and approximation algorithms have been proposed
for finding regions of various connectivity requirements [14, 15]; however, to the
best of our knowledge, our work is the first polynomial-time provably correct
exact algorithm for such a problem.

The earliest works considering the problem of counting minimum cuts in a
graph date back to the 1980’s. Ball and Provan [1] showed that for a single
source and a single sink, the problem reduces to the problem of counting maxi-
mal antichains in a poset. In particular, this poset is the directed acyclic graph
obtained by finding an acyclic maximum flow, constructing the corresponding
residual graph, and contracting each strongly connected component into a single
vertex. This implies that the problem is #P-complete for general graphs [13].
Recently, building on [1], a polynomial-time algorithm was developed for the
single-source-single-sink variant for planar graphs [2], using, as the first step,
the same reduction to the maximal antichains. However, the reduction can not
be applied in the contiguous multi-sink case, as the contractions can “bypass”
vertices lying in the region defined by the contracted component.

We present a novel reduction that preserves the contiguity of the cuts by
selectively contracting certain edges within the strongly connected components,
as well as edges that connect vertices from different strongly connected com-
ponents. This yields a planar directed acyclic multi-graph in which we need to
count antichains satisfying a contiguity requirement — we call them contiguous
forward cuts. Additionally, we present a new contiguity variant of the cut-cycle
duality, where we represent contiguous forward cuts as special kinds of tours of
the dual graph — we refer to them as non-crossing. This notion is similar to the
so-called non-self-crossing cycle, but with the restriction that the tour forms a
star-like shape with respect to every face.

Then we form an acyclic subgraph of the dual graph by “cutting” the pri-
mal graph along a tree connecting the source and sink vertices. We decompose
each tour into paths in this subgraph where every pair of consecutive paths is
joined by a single edge in the dual graph. Moreover, the paths can be sampled
independently and are guaranteed to not cross. This allows us to use dynamic
programming to obtain the final count of all non-crossing tours. While the proof
of correctness is quite involved, the final algorithm is reasonably simple, as sum-
marized in Algorithms 1 and 2.

For completeness, we mention recent works dealing with maximum flows and
minimum cuts in planar graphs. Borradaile and Klein [3] gave an O(nlogn)
algorithm for the single-source-single-sink acyclic maximum flow. Borradaile,
Sankowski, and Wulff-Nilsen [5] produce a minimum single-source-single-sink
cut for any source-sink pair in time proportional to the size of the cut, after
an initial O(n polylog n) preprocessing time. Italiano, Nussbaum, Sankowski,
and Wulff-Nilsen [11] give algorithms for undirected planar graphs that break
the O(nlogn) time barrier. Recently, Borradaile, Klein, Mozes, Nussbaum, and
Wulff-Nilsen [4] gave an O(nlog®n) algorithm for maximum flow from multiple
sources to multiple sinks. While all these algorithms are very ingenious, as far
as we know, none of them produce the respective cut counts (or samples).

Finally, we remark that we do not know of any polynomial-time algorithms
counting or sampling all minimum single-source multi-sink cuts in planar graphs
(i.e., not just contiguous cuts). Similarly, the problem is open for simple cuts
(i.e., cuts where the graph induced by the cut vertices is connected). In both
cases Ball and Provan’s reduction can be applied but it is unclear how to count
the corresponding sets of antichains. In the case of general cuts, an antichain
might correspond to a set of several tours, not just one. In the case of simple cuts,
an antichain corresponds to a cycle and our dynamic programming technique
does not guarantee to not repeat vertices across different path segments. The
case of contiguous cuts with multiple sources and multiple sinks is also open.

The paper is organized as follows. Section 2 contains preliminaries, Section
3 describes how to reduce the problem to the problem of counting contiguous
forward cuts in a planar directed acyclic multi-graph, Section 4 describes the rep-
resentation of contiguous forward cuts via non-crossing tours in the dual graph,
and Section 5 describes the main dynamic programming algorithm, followed by
the sampling procedure. The proofs are omitted due to space constraints.

2 Preliminaries

Let G = (V, E,w) be a weighted undirected connected planar graph with edge
weights w: E — RT. Let s € V and T C V, s € T. Our objective is to count!
all minimum (s, T)-cuts of G where an (s,T)-cut is a set of vertices C C V
such that s € C and TN C = (. The value of the cut C is the sum of all

! We first develop the counting algorithm — the sampling part will be discussed in
Section 5.

edge weights of edges leading out of C' — formally, Z(u,v)eE:ueC,ugc w(u,v). A
minimum (s, T)-cut has the smallest possible value of all (s, T')-cuts.

Given a directed graph H = (Vy,Ep), we say that a cut C C Vpy is a
forward-cut if there is no edge leading into C), i.e., there is no edge (u,v) such
that u ¢ C and v € C. A forward-cut C' is a forward-(A,b)-cut where A C Vi,
beVygandbg A it ACC and b ¢ C.

A flow network is a directed graph G = (V, E, ¢) where ¢ : E — R defines
non-negative edge capacities. Let s,t € V, s # t, be two vertices called the
source and the sink, respectively. A flow from s to ¢ is a function f : £ —
R satisfying the following properties: (1) capacity constraint: f(e) < c(e) for
every e € E, and (2) flow conservation: 32, (, yyep f(W,0) =32, (yuyer [(v,0)
for every v € V' \ {s,t}. The value of the flow f is the sum of the values of
flow edges out of s minus the sum of the values of the flow edges into s, i.e.,
Y ou (s,)€E f(s,u) = >, (u,5)€F fu,s). A flow is said to be mazimum if it has
the largest possible value among all flows from s to ¢ (we also refer to such flows
as s-t flows). A flow is said to be acyclic if the set of edges with positive flow
value {e € E | f(e) > 0} does not contain a directed cycle.

The residual graph of the flow f, denoted Gy = (V, Ey,wy), is a weighted
directed graph where E; contains the following two types of edges: (1) for every
e = (u,v) € E with f(e) < c(e), the set E; contains a forward edge e = (u,v)
with weight wy(e) = c(e) — f(e), and (2) for every e = (u,v) € E with f(e) > 0,
the set E; contains a backward edge € = (v, u) with weight w;(e’) = f(e).

The following theorem describes Ball and Provan’s reduction.

Theorem 1 ([1,2]). Let G = (V, E,w) be a connected positively weighted undi-
rected graph and let s,t € V, s #t. Let G' = (V, E’, ¢) be a flow network obtained
by including, for every edge (u,v) € V, two directed edges (u,v) and (v,u) in
E' with capacities c(u,v) = c(v,u) = w(u,v). Let f be an acyclic mazimum s-t
flow in G’ and let G'; be the corresponding residual graph. Let H = (Vy, En)
be the graph obtained from G’f by contracting each strongly connected compo-
nent into a single vertex, omitting duplicate and self-loop edges, and ignoring
the edge weights. Hence, vertices of H are sets of vertices of G — let § and t be
the vertices in Vg containing s and t respectively. Then, the set of minimum
(s,t)-cuts in G is in bijection with the set of forward-(t,3)-cuts in H by map-
ping a forward-(,3)-cut Cy C Vi to the (s, t)-cut C = Uygcy,x. Moreover, if G
is connected, then H, viewed as an undirected graph, is connected, and if G is
planar, then H is planar. The graph H can be obtained in time O(|V|> + |E|?)
and time O(|V|log|V]) if G is planar.

Next we define contiguous cuts that give rise to a contiguous region in the
plane — a concept useful for many segmentation applications, see, e. g., [6, 14] for
a discussion of several contiguity concepts. For a planar (directed or not) graph
G = (V, E) embedded in the plane and a set of vertices C C V', we define R(C),
a set of points in the plane, as follows. We start with the union of all faces that
contain a vertex from C' on their boundary. Then, for every vertex not in C, we
remove an e-neighborhood around this vertex. Finally, for every edge between

[{] 41 |
[L1 Fj 4l L] | | erL
| Rama R SnlRSFABRS
I [(4 (1
LT LT] J
(a): cut set C4 (b): cut set C2 (c): cut set C3 (d): cut set Cy (e)

Fig. 1. (a)-(d): Contiguous vs. noncontiguous cuts: four possible cut sets (of the 6 x 7
grid graph). The highlighted vertices are in the respective cut sets Ci,...,Cs. The
shown boundaries bound the corresponding point sets R(C1), ..., R(C4). Cut sets Cy
and C, are contiguous, cut sets C3 and Cy are not. (e): Contiguous cuts vs. non-self-
crossing cycles: not a contiguous cut, yet the cut set can be bounded by a non-self-
crossing cycle.

two vertices that are both not in C, we remove an e-neighborhood around this
edge. (By e-neighborhood we mean the set of points in the plane with distance
< ¢ from the vertex or edge. We choose ¢ so that the e-neighborhood does not
intersect with non-adjacent edges or contain other vertices in the planar drawing
of G.) We say that C is contiguous if R(C') forms a simply connected region in
the plane, i. e., if the boundary of R(C) splits the plane into exactly two regions.
See Figure 1(a)-(d). Informally, in the grid graph the contiguity concept means
a “corner-connected” region without holes.

To put contiguous cuts in perspective with the standard cut-cycle duality,
we note that contiguous cuts are not dual with the so-called non-self-crossing
cycles. Consider Figure 1(e) where a non-self-crossing cycle separates the cut
vertices from the remaining vertices, yet the cut is not contiguous.

Finally, to simplify our language, for a directed planar graph embedded in
the plane, we refer to the two faces neighboring an edge ¢ = (u,v) as the left
face of e (when traversing e from u to v, this face is on the left) and the right
face of e (the other face). We use the same terminology when describing regions
bounded by directed paths/cycles. By a clockwise traversal of the boundary of
a face (or a planar simply connected region) f we mean listing the edges on the
boundary of f in the clockwise order as seen from the viewpoint of somebody
standing inside f.

3 Reduction to contiguous forward cuts

In this section we present an algorithm that reduces the problem of counting
all contiguous minimum (s,T)-cuts to the problem of counting all contiguous
forward-(T, §)-cuts in a planar directed acyclic (multi)graph. On the surface this
statement seems analogous to Theorem 1: we can create a super-sink connected
to every sink by an co-weighted edge and apply the original reduction. However,
this can result in contracting a cycle consisting of edges that are not minimum-
cut edges into a single vertex while “bypassing” the area inside the cycle. Hence,

W
w

Gl b O ;2)

(a) (b) (c) (d) (e)

Fig. 2. Contiguous (s, T)-cuts in G vs. contiguous forward-(T', 8)-cuts in H. Figure (a)
shows a source and two sinks, the highlighted edges are of weight 1, all other edges are
of weight co. Figures (b) and (c) depict two possible minimum (s, T)-cuts (of weight
8) — (b) is not contiguous and (c) is contiguous. Figures (d) and (e) show the graph
H and the forward cuts corresponding to the minimum cuts from figures (b) and (c).
Both forward cuts are contiguous, even though the cut in figure (b) is not contiguous.

t1 to ty to

(a) (b) (c) (d)

Fig. 3. Applying Algorithm 1: Figure (a) shows the result for the graph from Figure
2(a). Figure (b) shows another possible input graph, the highlighted edges are of weights
1 or 3, the other edges are of weight oo. Figures (c¢) and (d) depict the corresponding
graphs after applying Ball and Provan’s reduction (there are 4 minimum (s, {t1,t2})-
cuts and thus 4 corresponding forward cuts) and Algorithm 1 (there is only one forward
cut corresponding to the single contiguous minimum (s, {¢1,t2})-cut).

noncontiguous cuts become contiguous forward cuts, as demonstrated in Figure
2. To avoid such problems, we designed a new reduction (Algorithm 1) that
selectively contracts and removes edges to preserve contiguity.

Theorem 2. Let G = (V, E,w) be a connected undirected planar graph embed-
ded in the plane, w > 0. Let s € V and T C V, s € T. Algorithm 1 decides
whether there exists a contiguous minimum (s,T)-cut in G. If yes, it constructs
a directed acyclic (multi)graph H' = (V;, E%) embedded in the plane, a vertex
§ € Vi, and a set of vertices T C Vi such that the set of all contiguous minimum
(s,T)-cuts in G is in bijection with the set of all contiguous forward-(T', 3)-cuts
in H'. The algorithm runs in time O(|V|3). Moreover, T is the set of vertices of
indegree 0 in H' and § is the only vertex of outdegree 0 in H'.

What happens when we apply Algorithm 1 to the graph from Figure 27
We will keep two edges from the middle vertex to §, as shown in Figure 3(a),
preventing the “illegal” contiguous forward cut from Figure 2(d). A graph where
Algorithm 1 needs to deal with self-loops is shown in Figure 3(b)-(d). Figure 4
sketches the individual self-loop cases on which the proof of Theorem 2 is based.

Algorithm 1 Reduction to contiguous forward cuts

1: Add an extra vertex, 7, to G, connect it with co-weight edges to the vertices in
T, and replace every edge by two directed edges of the same weight. Let Gy =
(Vz, Ef,wy) be the residual graph of an acyclic s-7 maximum flow f of the new
graph. Let T be the set of vertices of G that belong to the same strongly connected
component of Gy as .

2: Remove 7 and its adjacent edges from Gy, and ignore the edge weights, obtaining
Hj (embedded in the plane analogously to G).

3: Let e1,e2,...,e € Ey be the edges that belong to any strongly connected compo-
nent of Hj.

4: fori=1,...,¢ do

5: if e; does not form a self-loop in H;_; then
6: Get Hj from H;_; by contracting the edge e; (if it has not been removed
earlier).
7: else
8: Let (a,a) be the self-loop formed by e; in H;_;.
9: if s € a then
10: The self-loop splits the plane into two regions: let R be the region that does
not contain s.
11: if all vertices in 7" are in R then
12: Get H; from H;_, by removing the self-loop (a,a). See Figure 4(a).
13: else
14: Get H! from H}_, by contracting all vertices in R into a and remove all
(a,a) self-loops. See Figure 4(b)-(c).
15: else
16: if the two regions bounded by the self-loop each contain a vertex in T then
17: Return “no contiguous minimum cuts”. See Figure 4(d).
18: else
19: Let R be the region that contains the vertices in T.
20: Get H/ from H]_, by contracting all vertices outside R into a and remove

all (a,a) self-loops. See Figure 4(e).
21: For every t € T', contract all predecessors of ¢ into ¢ and omit self-loops.
22: Return H' := H; and its planar embedding, T', and the vertex § containing s.

4 Non-crossing tours

In this section we classify contiguous forward-(T, §)-cuts as certain types of tours
(i. e, cycles that are allowed to repeat vertices) in the dual planar graph. While
these tours may revisit faces (i. e., vertices in the dual graph), they cannot “self-
cross,” as defined below.

First, recall the standard definition of a directed planar dual. For a directed
planar (multi)graph H = (Vy, Ey) embedded in the plane, we define the dual
(multi)graph Hp = (Vp, Ep) as follows: Vp is the set of all faces of H and for
every edge e € Ey we include an edge from f; to fs in Ep where fi and fo are
the left and the right face of e, respectively.

Next we define a “non-crossing” tour and the “inside” and the “outside”
regions defined by the tour.

Fig. 4. Demonstrating the cases in Algorithm 1, possible contiguous cuts are dashed.

Definition 1. Let H' = (V/;, EYy) be a connected planar directed acyclic (multi)
graph embedded in the plane and let Hy, = (V},,Ep) be its dual graph. Let
dy,da,...,dg, di € By forie€ {1,...,£}, be a tour in Hp. Let fi1,..., fo be the
faces visited by the tour, i. e., the edge d; goes from f; to fiy1 (where for1 = f1)
and let e; be the edge that gave rise to the edge d; in the dual graph. We say
that the tour is non-crossing if the following holds for every face f wvisited by the
tour. Let fi, fi,, -5 fj, for 1 < g1 < ja < -0 < <L be all the faces on the
tour equal to f. Then, the edges ej, _1,€j,,€j,_1,€j,,...,€j,_1,€j, must appear
in this order when clockwise traversing the boundary of f (where ey := e;). See
Figure 5.

The inside region defined by the tour consists of all the starting endpoints
of the edges e;, i € {1,...,0}, and all their predecessors. The outside region
contains all the other vertices of H'.

Notice that a non-crossing tour can be drawn in the plane in a “non-self-
crossing way”. Notice also that drawing a tour in a non-self-crossing way does
not imply that the tour is non-crossing, as demonstrated in Figure 5(c).

Lemma 1. Let Hj, = (V},, E}) be the dual of the graph H' from Theorem 2.

Then, the set of all contiguous forward-(T', §)-cuts of H' is bijection with the set
of all non-crossing tours in Hp, such that the inside region defined by the tour
contains all vertices from T and the outside region contains §.

5 Counting and sampling contiguous minimum (s, T")-cuts

In this section we prove the main theorem of the paper:

Theorem 3. Let G = (V,E,w) be a connected undirected planar graph with
edge weights w : E — R, embedded in the plane. Let s €V and T CV, s & T.
The number of contiguous minimum (s,T)-cuts of G can be computed in time

Fig. 5. lllustrating Definition 1 (a non-crossing tour): Face f (the curve-shaped shaped
region) is visited by the tour three times in figure (a): f = fs = fr = fo, four times
in figure (b): f = fo = f5 = fi1 = fi3, and four times in figure (¢): f = f3 = f5 =
f7 = fo. The edges e; appear on the boundary of f in this order: (a) ez, €3, €s, €7, €s, €9
— the clockwise order (with respect to the tour), i.e., the tour could be non-crossing
(depending on the other faces on the tour); (b) e1,e2, e, €10, €5, €11, €12, €13, and (c)
€2, €3, €6, €5, €4, €7, €3, €9 — the tours (b) and (c) are definitely not non-crossing.

O(|V?). A uniformly random contiguous minimum (s,T)-cut can be produced
in additional linear time.

By Lemma 1, we know that it suffices to count all non-crossing tours sepa-
rating § from T in the dual graph Hp,. Even though counting cycles or tours in
planar graphs tends to be #P-complete [8,9,12], we show that the problem of
counting non-crossing tours in H, can be solved in polynomial time. In particu-
lar, we decompose the tour into paths (that cannot repeat vertices) and then we
count (or sample) each path type separately. The counting algorithm combines
the paths using dynamic programming.

Before we state the decomposition lemma, we define a “restricted dual” graph
that, unlike the dual graph H/,, will be guaranteed to be acyclic. The definition
will use a “tree” of edges in H' that connects T to &.

Observation 1 Let H' = (V};, EYy) be a planar directed acyclic (multi)graph,
let § € Vi, be the only vertex of outdegree 0, and let TC Vi, § ¢ T, be the set
of vertices of indegree 0. There exists a set of edges A C E'; such that for every
t € T there is a unique directed path from t to & using only the edges from A,
and every edge in A is on the path from t to § for some t € T'. Moreover, A can
be constructed in time O(|T||VE]).

Definition 2. Let H' (embedded in the plane), 3, T, and A be as in Obser-
vation 1. We define the restricted dual (multi)graph H) = (V},E}) of H' as
follows: V is the set of all faces of H', and, for every edge e € E7; \ A, we
include an edge from fi to fo, where fi and fo are the left and right faces of e,
respectively.

Lemma 2. The graph H; = (V}, E}) from Definition 2 is acyclic.

10

Fig. 6. A-induced order and wedges: (a) The A-induced order of vertices in T is
t1,...,%s. The wedge between f3 and 4 is highlighted — it is defined by the f3-v path
(its left path) and the 4-v path (its right path). The wedge is on the right of the edge
e; the wedge on the left of e is between i and #3. (b) The edges e1, ez, 3, eq are listed in
the A-induced order. (¢) Edge e is five wedges apart from es, since the region defined
by the ei-v path, the es-v path and the dotted curve contains 4 vertices from T.

We need some additional terminology before stating the decomposition lemma.

Suppose we reverse the edges of A and perform a depth-first traversal from 8§,
going through the neighbors of the current vertex in the counterclockwise order,
starting from the edge we used to get to the vertex. Let ¢y, %, ..., be the order
in which we visited the vertices in T (we refer to this order as the A-induced
order of vertices in T) Let fx 11 := 1. For every i € {1,...,k} we define a wedge
as follows. Let v be the first common successor of ; and £i+1 when restricted
only to edges in A. The path from #; to v, using only edges in A, forms the left
path of the wedge; similarly, the path from #;; to v, using only edges in A, forms
the right path. Every edge e € A is in two wedges: the left and the right wedge of
e, for which e lies on the right and the left path, respectively. See Figure 6(a).

In addition to the A-induced order of vertices in 7' , we also define the A-
induced order of pairwise independent edges in A as follows. Let eq,ea,...,¢e4 €
A, where for every i # j, e; is not a successor of ¢; in A. Suppose that we perform
the same depth-first traversal of A as described in the previous paragraph. Then,
if we visit the edges ey, es,..., e, in this order (or its cyclic rotation), we say
that the edges are ordered in the A-induced order of edges, see Figure 6(b).

We say that edge e; € A is j wedges apart from ey € A if there are j — 1
intermediate vertices from 7" between e; and es. More precisely, let v be the first
common successor of ey, es when using only edges in A. Connect the starting
vertices of e; and ey by a curve in the plane so that the curve does not touch any
of the edges in A. Then, consider the region on the right of the e;-v path in A,
on the left of the es-v path in A, and bounded by the curve; if it contains exactly
j — 1 vertices from T, we say that e; is j wedges apart from es, see Figure 6(c).

The following lemma describes how to decompose a non-crossing tour that
separates § from 7" into paths in the restricted dual graph H), (and edges in H7,

11

Algorithm 2 Counting non-crossing tours in the dual graph H, that contain
all vertices in T in the inside region and § in the outside region

1: for every e1,es € A do
2: compute &[eq, e2], the number of paths in H) from the right face of e1 to the left
face of ez (in linear time, since H} is acyclic)
: let p be a path from one of the vertices in 7' to 3, using only edges in A
: for every e; € p do
for every es € A such that e; is exactly 1 wedge apart from ez in A do
let aleq, e2] = Ele1, e2]
for j=2to|T|—1do
for every es € A such that e; is exactly j wedges apart from es in A do

let
alei, e2] := Z ale1, €')¢[e’, ea),

e’ep’

© XD g w

where p’ is the left path of ex’s left wedge
10: for every e € p do
11: let ale,e] := 35/, ale,e’|¢[€’, €], where p' is the left path of e’s left wedge
12: return 3 ale, €]

that connect the paths to form the tour). In essence, the tour is cut into path
segments by the tree A.

Lemma 3. Under the assumptions of Definition 2, let X be a tour in Hp,, the
dual graph of H'. The tour X is non-crossing and separates § from T if and only
if all of the following conditions hold: (1) there exist edges eq,ez,...,eq € A
such that for every i,j € {1,...,q}, ¢ # j, e; is not a successor of e; in A,
(2) e1,...,eq is the A-induced order of these edges, (3) for every i € T there
exists i such that e; is on the path from t to § in A, (4) there exists a path p;
in HY, from the right face of e; to the left face of e;y1 (let eqi1 :=e1), and (5)
X =p1,d1,p2,da,...,pq, dq, where d; is the dual of the edge e;.

Lemma 3 yields a dynamic programming algorithm (Algorithm 2) for count-
ing all non-crossing tours separating § from T. By gradually increasing the wedge
distance, it counts walks (paths with repeated vertices) in the dual graph H7,
starting and ending in faces both bordering an edge in A. In particular, ales, 2]
is the number of walks starting with the right face of e; and ending with the left
face of ey. For eq, ey at distance 1, aler, es] can be computed by a topological
traversal of H). For larger distances, the computation goes through an interme-
diate edge €’ on the left wedge of ey, “responsible” for separating § from the #;
on this wedge (see step 9). Correctness of Algorithm 2, along with Theorem 2
and Lemma 1 imply the counting claim of Theorem 3.

For the sampling part, we first choose e on the path p proportionally to
ale, e]. Then we choose e’ proportionally to ale, e'|¢[€/, €], etc., getting the edges
€1,€2,...,eq from Lemma 3. Then we independently sample each path p; (see [2]
for the details of this step), obtaining a non-crossing tour and the corresponding
contiguous minimum (s, T')-cut.

12

We conclude the paper with two remarks. First, the running time bound
O(n?) is tight. This can be seen by forming a graph with three paths of length
n/3 starting at the same vertex s and ending at t1, ta, t3, respectively (except
for s, the paths are disjoint). Second, the O(n?) preprocessing time might seem
prohibitively large for larger data sets. We note that in practice the graph H’,
formed by contracting a typically very sizable set of edges, is likely going to be
significantly smaller than the original graph. Combining this with a faster net-
work flow algorithm [4], the overall running time becomes much more practical.

References

1. Ball, M.O., Provan, J.S.: Calculating bounds on reachability and connectnedness
in stochastic networks. Networks 13, 253-278 (1983)

2. Bezdkové, 1., Friedlander, A.J.: Counting and sampling minimum (s,t)-cuts in
weighted planar graphs in polynomial time. Theor. Comp. Sci. 417, 2-11 (2012)

3. Borradaile, G., Klein, P.N.: An O(nlogn) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2) (2009)

4. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science
(FOCS). pp. 170-179 (2011)

5. Borradaile, G., Sankowski, P., Wulff-Nilsen, C.: Min st-cut oracle for planar graphs
with near-linear preprocessing time. In: Proceedings of the 51st IEEE Symposium
on Foundations of Computer Science (FOCS). pp. 601-610 (2010)

6. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: Theories and applica-
tions (2006), in Handbook of Mathematical Models in Computer Vision, edited by
N. Paragios, Y. Chen and O. Faugeras, Springer

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222-1239 (2001)

8. Creed, P.: Counting and sampling problems on Eulerian graphs (2010), Ph.D.
Dissertation, University of Edinburgh

9. Ge, Q., Stefankovi¢, D.: The complexity of counting Eulerian tours in 4-regular
graphs. Algorithmica 63(3), 588-601 (2012)

10. Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D.
IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 321-334 (2010)

11. Ttaliano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms
for min cut and max flow in undirected planar graphs. In: Proceedings of the 43rd
ACM Symposium on Theory of Computing (STOC). pp. 313-322 (2011)

12. Liskiewicz, M., Ogihara, M., Toda, S.: The complexity of counting self-avoiding
walks in subgraphs of two-dimensional grids and hypercubes. Theoretical Com-
puter Science 304(1-3), 129-156 (2003)

13. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12(4), 777-788 (1983)

14. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with
connectivity priors. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR) (2008)

15. Zeng, Y., Samaras, D., Chen, W., Peng, Q.: Topology cuts: A novel min-cut/max-
flow algorithm for topology preserving segmentation in n-d images. Computer Vi-
sion Image Understanding 112, 81-90 (2008)

